极性

编辑:奇丽网互动百科 时间:2020-07-11 18:58:23
编辑 锁定
极性(polarity):物体在相反部位或方向表现出相反的固有性质或力量,对特定事物的方向或吸引力(如倾斜、感觉或思想);向特定方向的倾向或趋势,对两极或起电(如物体的)特定正负状态。在化学中,极性指一根共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果均匀,则称为非极性。物质的一些物理性质(如溶解性、熔沸点等)与分子的极性相关。
中文名
极性
外文名
polarity
拼    音
jíxìng
判定标准
常用的是根据物质的介电常数
定    义
物体在表现出性质力量

极性概念

编辑
1:物体在相反部位或方向表现出相反的固有性质或力量。[1] 
2:对特定事物的方向或吸引力(如倾斜、感觉或思想);向特定方向的倾向或趋势。[1] 
3:对两极或起电(如物体的)特定正负状态。[1] 
4:在化学中,极性指一根共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果均匀,则称为非极性。物质的一些物理性质(如溶解性、熔沸点等)与分子的极性相关。[2] 

极性细胞极性

编辑
极性分子 极性分子
指细胞、细胞群、组织或个体所表现的沿着一个方向的,各部分彼此相对两端具有某些不同的形态特征或者生理特征的现象。关于形态上的极性,例如在腺上皮细胞中,核的位置靠近基部,中心体的位置靠近表面;在两栖类的成熟卵中,核靠近动物极,表层色素层分布在动物半球,卵黄粒多在植物半球等。关于在生理上和细胞化学上的极性,如卵细胞质内的氧化还原能、氧的消耗、SH基、核糖核酸浓度的梯度等。在形态形成中,极性在动态的意义上比较更具有重要的作用。例如,涡虫的切断体进行再生时,从朝向原来前端的断面上再生出头部,从朝向原来后端的断面上再生出尾部。水螅水母类的分离块往往显示出前后的极性,从前端再生出水螅体,从后端再生出螅茎。卵的极性与由其所形成的胚的形态轴有密切的关系(参见卵轴)。有时还出现细胞的极性受细胞内外环境影响的现象。例如,墨角藻属的卵细胞,其极性可为pH的梯度、温度的梯度、光的照射等所左右。还有许多无脊椎动物的卵,其极性是在卵形成时,由卵细胞和卵单壁所处的位置而定的。

极性共价键极性

编辑
共价键的极性是因为成键的两个原子电负性不相同而产生
三角形的三氟化硼分子 三角形的三氟化硼分子
的。电负性高的原子会把共享电子对“拉”向它那一方,使得电荷不均匀分布。这样形成了一组偶极,这样的键就是极性键。电负性高的原子是负偶极,记作δ-;电负性低的原子是正偶极,记作δ+。[2] 
键的极性程度可以用两个原子电负性之差来衡量。差值在0.4到1.9之间的是典型的极性共价键。两个原子完全相同(当然电负性也完全相同)时,差值为0,这时原子间成非极性键。相反地,如果差值超过了1.9,这两个原子之间就不会形成共价键,而是离子键。

极性分子极性

编辑
一个共价分子是极性的,是说这个分子内电荷
水是极性化合物 水是极性化合物
分布不均匀,或者说,正负电荷中心没有重合。分子的极性取决于分子内各个键的极性以及它们的排列方式。在大多数情况下,极性分子中含有极性键,非极性分子中含有非极性键。
然而,非极性分子也可以全部由极性键构成。只要分子高度对称,各个极性键的正、负电荷中心就都集中在了分子的几何中心上,这样便消去了分子的极性。这样的分子一般是直线形、三角形或四面体形。[2] 
分子极性对性质的影响:

极性判定标准

对于分子极性大小,目前尚无一个公认准确的量化标准,但比较常用的是根据物质的介电常数(尤其是液体和固体),对于一些简单的分子也可以根据其本身结构判断其是否有极性(如二氧化碳为直线型分子,为非极性化合物,但二氧化硫分子结构为V字型,故为极性分子)。

极性溶解性

分子的极性对物质溶解性有很大影响。极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂,也即“相似相溶”。蔗糖、氨等极性分子和氯化钠等离子化合物易溶于水。具有长碳链的有机物,如油脂、石油的成分多不溶于水,而溶于非极性的有机溶剂。[2] 

极性熔沸点

在分子量相同的情况下,极性分子比非极性分子有更高的沸点。这是因为极性分子之间的取向力比非极性分子之间的色散力大。[2] 

极性应用

通常分子极性可以用于物质的柱色谱分析和物质结晶分离,对于通常的实验来说:常见的溶剂极性大小顺序(由小至大)为:
石油醚、环己烷、四氯化碳、苯、甲苯、二氯乙烷、二氯甲烷、三氯乙烯、二苯醚、氯仿、正丁醚、乙醚、DME、硝基苯、二氧六环、三辛胺、四氢呋喃、乙酸乙酯、三丁胺、甲酸甲酯、三乙胺、丙酮、苯甲醇、吡啶、正丁醇、异丙醇、乙二醇、乙醇、乙酸、甘油(丙三醇)、乙腈、DMF、甲醇、六甲基磷酰胺、甲酸、DMSO、三氟乙酸、甲酰胺、水、三氟甲磺酸、无水硫酸、无水高氯酸、无水氢氟酸。
其中三氟乙酸,三氟甲磺酸,无水硫酸、无水高氯酸、无水氢氟酸等强酸由于腐蚀性极强,实际上在一般实验中应用不多,这里只是列出以便比较物质极性大小而已,通常柱色谱常用有机溶剂为石油醚、环己烷、二氯甲烷、三氯乙烯、乙醚、DME、二氧六环、四氢呋喃、乙酸乙酯、丙酮、乙醇、乙酸、甲醇这几种溶剂,至于具体问题,则经常使用几种溶剂的混合溶剂来进行分离物质。
物质结晶分离时通常将极性不同的溶剂加入溶液中,使得所需要物质结晶析出,最常见的即是摩尔盐和蓝矾的合成中加入乙醇使得二者析出(二者均难溶于乙醇)。至于有机物的重结晶则不胜枚举(例如咖啡因的重结晶时向其乙醇溶液中加入水使其结晶析出。[2] 

极性地磁极性

编辑
地磁极性目前是正向期
从现有知识可知,数十万年后珠峰高度一定要降低。因为从地磁极性倒转史的记录可知,地磁极性的正向期极少有超过100万年者。目前的地磁正向期已经维持了78万年,所以顶多再过20多万年,地磁极性应该倒转为“反向期”。这就意味着珠峰高度要降低。鸟类和指南针之所以能够辨别南北,是因为地球的磁场像一个巨大的磁铁棒,两极的磁场线与地球的自转轴非常接近,这是简单的物理学常识。
鲜为人知的是,最近150年来,地磁偶极子所产生的磁场正持续地急剧衰减,如果以这种速率发展下去,地磁场将在下个千年的某个时期彻底消失。如果地磁保护伞遭到严重破坏,高能宇宙粒子和太阳粒子将毁坏人造卫星,与人类息息相关的事物将暴露在致命的辐射之下。值得庆幸的是,地磁偶极子的消失是暂时的,是一种磁极逐渐向南偏转的现象,这种偏转最终致使指南针指向南极而不是北极。古老岩石内部的磁矿物表明,在过去的5亿年中,地球发生过数百次这种所谓的地磁极性倒转,但是还没有一种方法能够确定这类事件发生的具体时间,因此也就不可能预测地磁极性倒转的发生。
大多数地球物理学家都接受这样的假设:有一层2200公里厚的熔融态的铁在地核内流动,产生地球的基本磁场。但是直到大约6年前,才有学者编写出复杂的计算机程序,模拟地核运动及其磁效应。现在,有些程序不但能模拟地核运动,甚至模拟地磁极性倒转,有些仅需1200年就可以完成——这在地质年代中只是一眨眼的时间。
另一些研究者则从现实世界中寻找为什么会出现地磁极性倒转的线索。2002年初,巴黎地球物理研究院(the Paris Geophysical Institute)的Gauthier Hulot及其同事,通过人造卫星测量来跟踪地核表层附近磁场行为的变化。他们发现在非洲南端的地表深处,有一小片区域的地磁场力线指南地心,而该区域的主流地磁场则指向地面。在北极附近也存在多处类似的地磁线异常碎片区域。 Hulot研究小组认为,地磁倒转碎片区的增大能够解释目前地磁场的衰减现象,该区域铁原子核旋转方向与地核主流旋转方向相反而且在某些计算机的模拟中,这种碎片区的蔓延将导致地磁场全面倒转。
至于当地磁场突然逆转时会发生什么,新地球物理科幻恐怖小说《地心末日》给出这样的一幅景象:鸟类迷失方向、人类生活在频繁的辐射报警中。在同名电影中,世界各国政府联合建造了一艘载人探测船,它能够穿越2900公里厚的地幔层固体岩石,并且能够承受地核的灼热——这里的温度几乎可以和太阳表面温度相比。探测船的任务是:引爆核弹,从而恢复地核铁原子的自然流动并与地磁场倒转的趋势互相抗衡。
现有技术还远远达不到这种儒勒·凡尔纳(Jules Verne)式的解决方案,于是科学家提出了其他的保证:认为地磁偶极子的减弱并不一定代表地磁场会立即倒转。一万次地磁场自然波动中,只有偶尔几次会真正导致地磁极性彻底倒转。最近的计算机模拟也表明:当主流偶极子地磁场减弱时,占整个地磁场10%的地球外围磁场会增强。

极性晶体管极性

编辑
晶体管极性是指其分类或管脚极性。按分类,如三极管分为硅晶体三极管和锗晶体三极管,
发光二极管引脚极性(图1) 发光二极管引脚极性(图1)
有PNP型和NPN型两种类型。管脚极性,如三极管指PNP或NPN型从三个区引出相应的三个电极:发射极(e)、基极(b)、集电极(c)。[3] 
词条图册 更多图册
参考资料
词条标签:
词语 自然学科 科技术语 科学 生物物种 理学